Log in
Log in


Do you want to write for the SWCC Blog? If so, please review the following guidelines and then send your ideas to Someone will be back in touch with you!

The SWCC Blog Editor is Cristina Sanza. Cristina is a Digital Journalism Instructor and Writing Coach in the Department of Journalism at Concordia University in Montreal. There, she also organizes the Projected Futures international science journalism graduate summer school and edits the department's digital magazine. Formerly an SWCC board director, she currently serves as the blog editor and a member of the digital media committee. Outside of work and volunteering, Cristina loves resistance training, developing high-protein recipes, and tending to her garden.

  • 12 Nov 2020 9:02 AM | Anonymous

    They say you know you're in love when all the songs suddenly make sense. Harmonious chemistry certainly plays a part.

    From Robert Palmer's soulful rock proclamation, "Addicted to Love," to Ke$ha's late 2000s club hit, "Your love is my drug," for decades we've heard songwriters proclaim the prescriptive power of being in love. So just what is in love potion #9? And more importantly, with 45 per cent of Millennials making the conscious decision to stay single and focus on critical milestones like finding a career or obtaining a degree, can we replicate that head over heelssensation without a partner?

    Despite the ability to purchase a robot companion, a threat I've made to parents when they mention I've yet to bring a man home for Thanksgiving, we are miles away from encapsulating the high of romance into a device or an admissible drug. 

    That isn't to say we haven't uncovered ways to modulate neural pathways associated with that lovin’ feeling. In fact, a medication most women take as frequently as their daily vitamins has proven to do just this. 

    Since their introduction in the 1960s, hormonal contraceptives have been used by more than 500 million women alive today. The pill works by tricking a woman's body into thinking it’s pregnant by modulating levels of the natural female hormones estrogen and progesterone. However, despite their widespread use, little research has been done to fully understand the effect of administrating what are essentially reproductive hormones on the female brain. 

    Enter Michael Winterdahl, an Associate Professor in Neuroimaging at Aarhus University in Denmark and a bit of a love doctor himself. Winterdahl sought to determine if birth control could affect blood oxytocin levels in women on the pill. His study results illustrate that birth control can increase oxytocin levels in women regardless of their relationship status.

    So what's so special about oxytocin? It’s commonly referred to as the love hormone, a neurochemical that plays an indispensable role in helping us form bonds, including with romantic partners. Could be the key to a real love potion #9? 

    "It's the cuddle hormone; it’s the love hormone. It should be good." Winterdahl explains, "However, oxytocin should be released dynamically, as a burst." 

    This means that having this system hijacked by the birth control pill could also hijack how women form relationships. 

    Oxytocin is tied to learning circuits in our brains. When boy meets girl, they each receive a burst of the neurochemical that signals to them that this one may be worth pursuing. Winterdahl says the pill might change this feeling for women. Much like the effect of opioids, after receiving that first rush, or a sustained dosage, it will take more and more of the drug to replicate that feeling. 

    "If you're always high (on oxytocin), then the peak is just a small wave on this big ocean, so maybe you won't feel the buzz of being with the right person," he says.

    What does this mean for women on the pill? Well, the results aren't entirely clear. Women on oral contraception (and often for reasons beyond contraception), meet partners, fall in love, and live happily ever after. Studies show that women on the pill tend to choose a different variety of mates than their freecycling peers. 

    Winterdahl hypothesizes this could come down to how the pill functions by tricking the female into thinking she's pregnant. This causes them to look for comfort and security in a mate versus taking more risks and seeking out men who have more immune systems differences from themselves— making the steamy bad boys of the world just a little less appealing. 

    Another striking correlation was validated by Winterdahl's study, underlining that women on the pill do not exhibit a regular stress response and this can have a bearing on their dating behaviour. 

    Winterdahl explains that stress hormones like cortisol can drive us to excel in various scenarios by imparting a keen sense of alertness in new situations. Within the context of dating, the hormone helps us detect danger and the micro-cues (vocal inflection, body language, etc.), a potential date is signaling to us. 

    Without this stress response and an oxytocin surge, women are more likely to settle for the safe mate. Likely a nice accountant, engineer, banker – someone pragmatic who might not elicit butterflies, but seemingly can't be harmful. 

    So, Mom, Dad, no need to worry. Robots likely won’t make an appearance this Thanksgiving. But don’t complain if all my date wants to talk about is balanced spreadsheets or mass transfer. 

    By: Miranda Stahn

    A prairie girl at heart, Miranda completed both her Bachelor's and Master's of Science at the University of Alberta. Her thesis research focused on classifying new bacterial viruses for a unique class of bacteria known as Methanotrophs - named for their ability to survive off of unusual carbon compounds such as methane. Outside of her studies, Miranda has always been passionate about science communications and outreach. Since undergrad, she has been involved in several outreach initiatives run through well-known programs such as the Telus World of Science Edmonton (TWOSE), the University of Alberta's DiscoverE, WISEST (Women in Scholarship Engineering Science and Technology), and Science Slam Canada. Miranda is committed to making science accessible to everyone and firmly believes that effective and entertaining science writing is key to helping the public disseminate truth from fiction. For more details, please check out her LinkedIn:

  • 09 Nov 2020 8:37 PM | Anonymous

    The time has come to explore the role of the polymath in modern-day science. The COVID-19 pandemic provides an opportune moment for this endeavour. The global impact of COVID-19 has highlighted the importance of viewing the pandemic from several angles, an ability that is well-matched to polymaths.

    According to the Oxford Learner’s Dictionary, a polymath is “a person who knows a lot about many different subjects (1).” The importance of this cannot be overstated in the context of a pandemic which shows the need to draw knowledge from several disciplines at once.

    A 2020 correspondence by Michael Araki in The Lancet states, “Today, we face numerous problems, from global health challenges to environmental crises, whose range and scope go far beyond any single discipline (2).”

    Management of the COVID-19 pandemic requires the support of many experts spanning various fields (3). A “multidisciplinary team approach” based on contributions from virologists, physicians, epidemiologists, immunologists, biostatisticians, pharmaceutical scientists, information technologists, economists and policy makers provides in-depth perspectives that may otherwise be unintentionally overlooked. 

    Amidst the genuine desire to share discipline-focused knowledge, challenges arise when disagreements occur among the experts involved. Strongly differing expert viewpoints, although valid in their own right, can influence the time taken for critical decision-making during crises. A possible approach for overcoming this hurdle is through the support of polymaths to provide a panoramic view of a situation. The ability to connect knowledge from various fields and moreover, transform that knowledge into meaningful solutions, can introduce a practical advantage to many situations (4).  

    Polymaths have long been recognized for their creativity, innovation and critical thinking. The contributions of past polymaths like Isaac Newton, Nikola Tesla, Leonardo da Vinci, Albert Einstein, Marie Curie and Jagdish Chandra Bose, to name a few, clearly show this (5-7). An equally important but less readily recognized trait is their ability to appreciate common principles across fields (8).

    So why is it uncommon to find polymaths nowadays?

    Despite the undeniable scientific contributions made by polymaths, a shift in favour of “specialists” has occurred over the last two centuries (9). This trend is readily observed in a modern, departmentalized university system where knowledge specialization is highly encouraged.

    It is therefore, important to understand the rationale that led to the deviation of the “Jack-of-all-trades, master of none” approach. Since the time of the “Renaissance man,” which has been epitomized by Leonardo da Vinci, knowledge has expanded at warp speed across practically every field (10). However, is a fear of information overload enough to justify a limited place in the modern world for polymaths, even at the price of decreased creativity? 

    Perhaps a look in the direction of Elon Musk, Steve Jobs and Mark Zuckerberg can offer useful insights. These modern-day polymaths have successfully used their “atypical skills” and ingenuity to make a significant impact, globally (11). Equally compelling is a notable history of successes by polymaths as Nobel laureates (12). 

    Logically speaking, is this multi-creative potential that defines polymaths confined only to a few selected individuals?

    In a brief commentary, Ronald A. Beghetto, and James C. Kaufman suggest that there is a potential for all individuals to express creativity across multiple knowledge domains (13). Accordingly, the more pertinent question is, “how likely is creative polymathy and how might it be nurtured in schools and classrooms?"

    Since information is readily available through the internet and a modern polymath’s competence is not required across every domain, the idea may not be as far-fetched as once perceived (11). In fact, in a dynamic, unpredictable world, scientific polymaths may very well have their place in the not too distant future.


    • Araki M. Scientific polymathy: the end of a two-cultures era? The Lancet. 2020;395(10218):113-114. DOI: 10.1016/S0140-6736(19)32564-4.
    • Root-Bernstein R, Root-Bernstein M. A Statistical Study of Intra-Domain and Trans-Domain Polymathy among Nobel Laureates. Creativity Research Journal. 2020;32(2):93-112. DOI:
    • Beghetto RA, Kaufman JC. Do we all have multicreative potential? ZDM. 2009;41(1):39-44

    By: Shirene Singh

    I am a PhD graduate of the University of Guelph with over 5 years of experience as an educator and medical sciences researcher. I also have a background in veterinary medicine. My passion for writing extends to global health concepts, viral immunology, infectious diseases and vaccines. My hope is to combine my scientific background and passion for writing to contribute to knowledge translation. My favorite pastimes include reading literature books, cooking and travelling. LinkedIn Profile:

  • 29 Oct 2020 4:52 PM | Anonymous

    Eric Olson and a friend were hiking along Gainsborough Creek in Southwest Manitoba when they found what archaeologists had been seeking for decades: Firm evidence of First Nation farming.

    “It was the smoking gun we were looking for,” says Mary Malainey, archaeologist and professor at Brandon University in nearby Brandon, Manitoba. 

    What Olson and friend found was a hoe blade made from a bison scapula bone. Then they found another and a fragment of a third. “These bison scapula hoes are the biggest archaeology discovery in Manitoba in over 30 years,” Malainey says.

    First Nation farmers cut a hole through this bison scapula for sinew bindings to secure the bone blade to a wooden shaft. Photo: Mary Malainey

    A bison scapula has a wide blade at one end and a thick knob at the other. The overall shape is somewhat like a snorkeling flipper. In the centre, First Nation farmers cut a hole for the sinew bindings to secure the bone blade to a wooden shaft. For Olson, an amateur archaeologist studying at the University of Manitoba, this human-made hole clearly identified the scapula as a tool.

    Olson contacted Malainey, who recognized right away the significance of this discovery. It was strong evidence of pre-European farming on the Canadian grassland plains. Interestingly, Malainey says the previous big discovery, the one from over 30 years ago, was also evidence of First Nation farming on the eastern edge of the plains at Lockport, 350 km northeast of Gainsborough Creek.

    Gainsborough Creek is a tributary of the Souris River in Southwest Manitoba. Photo: Jay Whetter

    With funding from Brandon University, the Manitoba Archaeological Society and the Manitoba Heritage Grants program, Malainey put together a crew to do a testing excavation of the Olson site in July and August 2019. At least half a dozen archaeologists volunteered their time to help, which is a “testament to the importance of this discovery,” Malainey says.

    Malainey and the volunteers dug a series of one metre by one metre test units looking for intact cultural deposits – the stone tools, animal bones and pottery left behind by the people who had lived there. Olson’s hoe was found on the creek bed, which means it eroded from the bank and was no longer in its original location. As a result, the archaeologists could never confirm its place in time and space.

    Over the summer of 2019, Malainey and crew found artifacts in the dark band of paleosol, a layer in the soil horizon containing deposits from human occupation. These artifacts included a modified scapula and bone flakes, which she says could be signs of a bone tool workshop. In short, she says, “we found what we were looking for”.

    One archaeologist on site was Sara Halwas, a sessional instructor in anthropology at the University of Manitoba and co-editor of the Manitoba Archaeological Journal. Halwas has worked at the Lockport site that, in addition to bison scapula hoes, yielded bell-shaped crop storage pits and the charred remains of corn. This indicates that the crop was actually grown at that location. 

    Halwas says the Lockport farm site was active from the 1200s to the 1400s during a medieval warming period that made it possible to grow corn that far north. “One hypothesis is that farmers moved up the Red River Valley, then left during the Little Ice Age, which started around 1450,” Halwas says. But where did they go?

    They might have moved southwest. In the 1970s, Leigh Syms, curator emeritus of the Manitoba Museum, started looking for evidence of First Nation cultivation in southwest Manitoba but never found the “smoking gun”. Bev Nicholson, a former Brandon University archaeologist, found evidence of corn consumption in the Eastern Prairies but did not find clear evidence of local farming. Eric Olson’s discoveries changed that. What makes the Olson site especially exciting for archaeologists is its relatively pristine condition. It is within a wildlife preserve and appears to be untouched since the time of European arrival.

    Eric Olson and a friend discovered firm evidence of First Nations farming while hiking at Gainsborough Creek in Southwest Manitoba. Photo: Jay Whetter

    “This is very rare,” Halwas says. The Lockport site was heavily disturbed by establishment of the town and construction of the Winnipeg floodway. Other known Great Plains farming sites on the Missouri River were flooded by dam building from the 1930s to 1950s and were never properly examined.

    “The Olson site gives us the chance to answer questions we’ve not been able to answer before,” Malainey says.

    Malainey has been busy this winter applying for grants hoping to obtain enough funding for a five-year project at the Olson site. This summer, she hopes to use ground-penetrating radar to search for crop storage pits near the site. Halwas will be part of the team and has a few modern archaeology techniques she looks forward to trying. These include micro-botanical tests to check for pollen grains, phytoliths (silica bodies that form within and between plant cells) and starch grains, all of which she can use to identify the plants farmed in the area. Chemical tests of soil core samples can also show “peaks and deletions in soil phosphorus,” Halwas says, which could be evidence of a nutrient-hungry crop like corn. 

    Malainey says the Olson site was probably farmed for 150 to 200 years, during a time period after Lockport and up to the beginning of the fur trade. Further examination will be able to add clarity to that claim. Another question begging an answer is who were these farmers? “At this time, we don’t know,” she says. “European contact led to huge disruptions to Indigenous populations, which makes it very hard to attach ethnicity.” 

    Reprinted with permission from Prairie History magazine.

    By: Jay Whetter

    Jay Whetter is an award-winning agriculture journalist. He lives in Kenora, Ontario.

  • 26 Oct 2020 7:45 AM | Anonymous

    The front face of the Thwaites Glacier extends 18 – 23 metres above sea level. Photo: Carolyn Beeler/The World.

    Stretching over an expanse of Antarctica almost the size of Great Britain is a vast sheet of ice called the Thwaites, aptly nicknamed the Doomsday Glacier.

    As the earth warms at an accelerating rate, triggered by the heat-trapping effects of greenhouse gases, the Thwaites Glacier is set to trigger a massive rise in global sea levels. Once it melts away, it threatens to submerge coastal cities and even large parts of countries. 

    Antarctica, holding about 90 per cent of the ice on the planet, is central to the future rise of sea levels. Formed as centuries of snowfall compacted into ice, its ice sheet can be as much as two kilometres thick. As the ice builds up, it is pushed outward to the edges of the continent as glaciers.

    Antarctica’s Eastern ice sheet sits on high ground mainly above sea level, while its Western counterpart sits atop land that is mostly below sea level. It is here where ice is most compromised by warming waters, and it is here that the Thwaites Glacier rests. 

    This warm seawater originates in the North Atlantic and flows deep beneath a layer of colder water toward the South Atlantic. Shifting wind patterns due to a warming Pacific Ocean allow this warm, deep circumpolar water to well up over Antarctica’s continental shelf, encroaching on the icy continent. 

    The anatomy of the Thwaites Glacier itself reveals clues as to how quickly and how much of it will melt when faced with a warming climate. 

    While glaciers originate on land, the portion that tapers as it extends toward the sea sits on top of the water. This is a glacier’s ice shelf and it acts to buttress its main body.

    As oceans and the atmosphere warm, these icy ramparts weaken, leading to increased melting and calving where the ice face crumbles away as icebergs. Crumbling ice shelves can no longer support the ice behind them, and glaciers become preconditioned for further disintegration. To make things worse, declining snowfall means glaciers can’t replenish themselves. 

    The Thwaites Glacier, falling victim to its own location and structure, already contributes four per cent to rising global sea levels as its ice flows into the Amundsen Sea - a huge figure for a single glacier. Owing to a collapsing ice shelf, glacial “earthquakes” have been detected on its surface for the first time. 

    Usually the ice that breaks off of glaciers is thinner and just drifts away, but the ice at the edge of the Thwaites is thick. With warm water melting it from underneath, icebergs taller than they are wide are released, capsizing and colliding with the front edge of the glacier as they turn. 

    While this glacial disintegration is visible and dramatic, what lies below the water’s surface betrays another cause for concern. 

    The land beneath the Thwaites Glacier, the bedrock, slopes downward. The point at which the glacier meets the bedrock is called the grounding line, and as the ice of the glacier’s underside melts, the grounding line shifts back. Over time, more of the glacier sits directly above water instead of being attached to land, promoting accelerated melting from beneath. 

    What’s more is that cavities have now been detected below the glacier just ahead of its grounding line, further endangering its hold on the ground, allowing for warm water to impose deeper on the underside. Warm water has recently been measured for the first time at the grounding line. The temperature and high turbulence of this water allows it to more efficiently melt the base. One cavity in particular clocks in at two thirds the size of Manhattan.

    That isn’t all. Glacial ice, built of fallen snow, is fresh water, making it light relative to salty seawater. As glaciers melt, the light, fresh water flows upwards towards the glacier and heavier, warmer sea water is drawn up behind it. When sea water is cold this process occurs slowly, melting just a few dozen centimeters of the glacier a year, an amount easily balanced by new ice created by falling slow. Warm sea water, on the other hand, can increase melting rates a hundred-fold. 

    Should the Thwaites Glacier collapse, sea levels could rise by half a meter, but the harm doesn’t end there. Since the glacier stretches into the centre of Antarctica’s western edge, its crumbling could destabilize the rest of the western ice sheet, kicking off a multi-glacier collapse and resulting in more than three metres of sea level rise over the next few centuries. That’s enough to submerge parts of London, Vancouver, and New York City.

    Scientists still debate how imminent Thwaites’ full collapse is. While it is predicted it will take centuries, some believe the process has already begun. What scientists do know for certain is that once it gives way, there is no stopping it. Collapse, once begun, is inevitable. 

    Human action to curb greenhouse gases will alone determine how much ice is lost and how quickly. If we squander the opportunity to be proactive, the planet’s coasts as we know them, together with some of the world’s greatest cities, are inevitably imperiled. 


    By: Natalie Workewych

    Natalie is a PhD Student studying Pharmacology at the University of Toronto. Her academic background includes an undergraduate degree in Biochemistry and Pharmacology. She hopes to encourage ideas through writing, and bring thoughts on science to anyone the least bit curious.

  • 20 Oct 2020 4:05 PM | Anonymous

    Social distancing restrictions have eased and we’re once again enjoying meals at restaurants. It’s an old favourite leisure activity, with a twist: before sitting down, we scribble down our names and phone numbers.

    If COVID-19 was present while we ate, a public health officer will call, warning us of possible exposure and requesting we take appropriate precautions. It’s called contact tracing and it’s fundamental to controlling the pandemic. But what else might our personal information be used for?

    Many of us are only now learning about contact tracing in the wake of the COVID-19 pandemic. It’s not a new concept and is regularly used to reduce the spread of other communicable diseases such as measles and hepatitis through having people self-isolate to break the chain of transmission.

    Though valuable, manual contact tracing has its drawbacks. Reaching contacts by phone is slow, and a person might unknowingly spread the disease to others by the time they are contacted. If you’re trying to reach one or two people, this isn’t a problem. Increase that tenfold, and things get complicated.

    Plus, human memory is hardly foolproof. People may simply not remember who they were in contact with or simply cannot provide contact information of strangers in line at the bank or those with whom they shared a subway car. People may also deliberately give false names and numbers to preserve their anonymity.

    The problem: public good versus personal privacy? The solution, say experts, may lie in palms of our 21st century hands: the cellphone.

    The basic idea is quite simple: we download an app and as we go about our day, cellphones in hand, they communicate to other app-equipped cellphones in range. When someone tests positive for COVID-19, a notification is sent to everyone whose cellphones came into close proximity with the newly infected person. Abiding by pandemic protocol, those who have been notified self-isolate and are tested, indicating if positive themselves, and the process repeats.

    With this swifter and broader system of cascading notifications, tracing cellphones stands out as the perfect fix.

    While that might just be true in respect to reducing the spread of infection, it only holds until a key concept is introduced into the framework: individual privacy. It’s a concept that giving up personal information, though benefitting the health of society, may put at risk.

    This is no small stumbling block. Effective contact tracing using cellphones must carefully balance both the individual’s right to privacy and the interest of public health.

    Canada’s Privacy Act protects personal information, including what can be collected and how it is to be used. With contract tracing, any information that is unnecessary, such as exact user locations, should not be collected. Otherwise, in the wrong hands, apps built without privacy in mind could quickly degenerate into a surveillance tool.

    Most countries have adopted some level of anonymization to keep user identities private, but another obstacle to privacy lies in where collected data is stored. Within what’s called a centralized architecture, data is uploaded to a server that is controlled by the government health authority. Within a decentralized architecture, data is stored only on user phones.

    Centralized systems, like those used by China and South Korea, are more extensive in the data they collect, including a user’s GPS location history. These apps amount to true contact tracing systems, favouring public health response over privacy.

    The most commonly pursued solution has been a decentralized system where GPS location is not recorded or stored. Instead, cellphone proximity learned by Bluetooth determines who needs to be notified of potential exposure. Known instead as exposure notification systems they, in contrast to true contact tracing apps, put more emphasis to privacy.

    Canada’s exposure notification app, COVID Alert, is rooted in user choice. Whether to partake in exposure notification and whether to share COVID-19 status with the app are entirely up to the user.

    A voluntary app, however, comes with its own self-imposed restriction to public health. To be effective, greater than 60 per cent of the population has to fully participate. These rates have proven to be decidedly difficult to reach, as evidenced by Singapore’s TraceTogether app clocking in at only 37 per cent participation at the time of writing. Australia’s COVIDsafe sits at 22 per cent.

    Some governments have heeded past warnings, speaking to their belief that voluntary systems are not enough.

    In 2015, South Korea experienced an outbreak of the coronavirus-caused Middle East Respiratory Syndrome, or MERS, ultimately leading to the highest number of deaths of any country outside of the Middle East.

    Cautiously looking to an inevitable future of epidemics, South Korea modified its law so that the government could collect personal data and security footage only during epidemics. Today, the movements of people who test positive for COVID-19 are traced and made public so that others can avoid paths of infection. Anyone can see where someone who has tested positive has been, down to the hour.

    With little consideration for privacy protection, western democracies quickly squirm at the seeming injustice.

    While we may be concerned about privacy in principle, we regularly give up private information for a small reward, a privacy paradox. We instinctively tell Google Maps where we are so it can help get us to our destination but take issue with being notified of exposure to a disease, where the stakes are much higher. 

    Early on epidemiologists knew eradicating COVID-19 would not be possible, but that its containment very well could be. Contact tracing allows for chains of disease transmission to be severed. The caveat is there is a price to pay, and whether that price be privacy or public health is a decision for every individual government.

    The choice, when given, to participate? Well, that one’s all ours.


    By: Natalie Workewych

    Natalie is a PhD Student studying Pharmacology at the University of Toronto. Her academic background includes an undergraduate degree in Biochemistry and Pharmacology. She hopes to encourage ideas through writing, and bring thoughts on science to anyone the least bit curious.

  • 09 Oct 2020 3:52 PM | Anonymous member (Administrator)

    This article originally appeared on the blog of the ScholCommLab, an interdisciplinary team of researchers based in Vancouver and Ottawa interested in all aspects of scholarly communication.


    How did modern science communication begin? How has it evolved from one country to the next? What social, political, and economic forces inspired those changes? 

    Published this week by ANU Press, Communicating Science: A Global Perspective explores all of these questions and more. The impressive volume is a collaboration between seven editors and more than 100 authors, including the ScholCommLab’s own Michelle Riedlinger (Queensland University of Technology) and Germana Barata (Universidade Estadual de Campinas). Featuring stories from 39 countries, it charts the development of modern science communication across the world, from Uganda to Singapore, Pakistan to Estonia. 

    In celebration of the book’s launch, the ScholCommLab spoke with Michelle and Germana about what Communicating Science can tell us about the past, present, and future of science communication.  

    You’re both co-authors (with Alexandre Schiele) of the Canadian chapter. Tell me about the mapping research you did at the ScholCommLab and how it relates to the book. 

    Michelle Riedlinger: I was a member of the Science Writers and Communicators of Canada and I was helping to organize some local SWCC events in British Columbia. One of the other event organizers was a member of the SWCC Board and she talked about the recent name change of the organization from the Canadian Science Writers Association to the Science Writers and Communicators of Canada. She said that the organization was seeing changes in membership, and also seeing that science communication was exploding online. We got together with the SWCC President at the time, Tim Lougheed, and decided, with Germana—who was already focused on mapping work and was a visiting scholar in the ScholCommLab at the time—that it might be a good idea to map online science communication in Canada. 

    Where do we see science communication online? Who’s doing it, how are they doing it, and what are their values? These initial questions sparked what would become a three-year-long project exploring online science communicators in Canada—and eventually this helped us write the Canadian chapter. We’d already been looking at science communication in Canada, so it was a nice easy step to then think: Alright, this is where we are. Now, where did we come from?

    Michelle Riedlinger at the SWCC 2018 Annual ConferenceMichelle Riedlinger (second from left) with participants at SWCC’s 2018 conference.

    Germana Barata: The project was a great opportunity to use altmetrics—social media metrics or the social attention to scientific content on online platforms—as a tool to track self-identified science communicators on Twitter. We located science papers shared by Twitter users geolocated in Canada who used keywords related to science communication on their mini-bios, in either English or French. It is interesting that a mere translation of keywords wasn’t enough to find science communicators in French and English, so we had to define specific keywords for each group and the keywords related to different concepts of science communication. Although limited, the method appeared to work well to locate active science communicators on social media. 

    What did the project teach you about Canada’s science communication landscape? 

    GB: The mapping project showed us that there is an enriching community of science communicators using social media to communicate science to society—most of whom are self-taught and do not earn a living with science communication but believe that is it important to reach broader audiences. The majority were engaged women, which was a positive result. I was also impressed with the quality and variety of strategies that everyone is practising, with a strong presence of environmental and health issues, as well as science and art approaches. 

    “social media is a place where originality, culture, and regionality stands out and where everyone may find a niche for their communication efforts.”

    Germana Barata

    My home, Brazil, is a huge country with intense, creative activities in science communication. My work in Canada made me realize that social media is a place where originality, culture, and regionality stands out and where everyone may find a niche for their communication efforts. It made me look to my country with more optimism. 

    Science communicators at the SWCC 2018 conference round tableDiscussing science communication and social media at the 2018 SWCC Annual Conference. Left to right: Samantha Yammine, Theresa Liao, Germana Barata, Alexandre Schiele, Kurtis Baute, Amy Kingdon and Tim Lougheed.

    Tell me more about the Canadian chapter. What makes our science communication story unique?

    MR: Canada’s really interesting to write about. It’s an unusual country in terms of being bilingual, with the US as its closest neighbor and also having colonial influences. A lot of Canadian science communication activities and processes have been influenced by what is happening in the US, but with a distinct Canadian flavor. For example, the SWCC came out of a branch of the US: The National Association of Science Writers (NASW). That US group started in 1934 and is still going strong today. Canadians could be members of the NASW, but in the late 60s they decided that they wanted to have their own association. In fact, it is SWCC’s 50th anniversary this year. Like NASW, SWCC maintains a focus on advocating for quality science writing but they also recognize that a huge range of professionals communicate about science and also need a professional networking organization. In other countries, professional science communication groups have always included press officers and science outreach professionals—they didn’t start exclusively as science journalism associations.  

    You mentioned Canada’s bilingualism. How has that influenced its science communication story?

    MR: Quebec has a substantial section of its own in our chapter because they have their own science communication story to tell. We didn’t see a lot of overlap of cultural institutions. We see Canada’s two cultures distinctly in the history of its science communication. English-speaking Canada definitely has colonial UK influences: ideas around science participation and dialogic communication. But in French Canada, to be a cultural citizen means being cultured in science—so a lot of Canada science communication “firsts” happened in Quebec. The first radio program focused on science, the first Masters and PhD graduates in science communication, and the first national conference on science communication all happened there. Canada’s National Science Week also started in Quebec. So, over the years, we see this strong connection between science and culture, or science and society, heavily supported by the Quebec government. I think that is a really interesting difference. 

    Left to right: Amy Kingdon, Tim Lougheed, Germana Barata, Samantha Yammine, Kurtis Baute, and Michelle Riedlinger. Pictured at the 2018 Science Writers and Communicators Annual Conference

    How has Canada’s science communication landscape evolved over time? 

    GB: Science communication used to be dominated by men—by scientists, at first, but increasingly by science journalists. Fortunately, the internet and social media have opened windows of opportunity to a more varied, multidisciplinary, and multimedia community that has dropped the need for mediators to bridge science and society. Fighting denialism and fake news have shown us that we need a growing active community of science communicators and that to empower them we should be able to provide them with more training, funds, and visibility. They are doing an amazing job.

    “Fighting denialism and fake news have shown us that we need a growing active community of science communicators and that to empower them we should be able to provide them with more training, funds, and visibility.”

    Germana Barata

    Michelle, you were also an editor for the book itself. Did that process reveal a lot of similarities in terms of how science communication stories developed in different countries?

    MR: As an editor, I was excited to read about science communication happening in the other countries and how diverse it was—but also to get a sense of where there was cohesiveness. One common thread was government support and funding. This has always been a driver of science communication. For example, after World War II we saw a big push for science by governments in many countries. And science communication has followed this government or national investment in science and technology in many instances.

    I was also interested in the political, cultural, economic forces in different countries and what those forces meant in terms of driving science communication. In places like the Netherlands, for example, the idea of a collective social system really shaped how science communication developed. Ideas around participatory science communication have been imported from the Netherlands to the UK and then carried on into many other countries.

    It’s a strange time for science, and for science communication. Does the book offer a sense of where science communication might be headed next?

    MR: I hear people in the science communication community talk about how science communication has “failed” us or that science communication is in “crisis.” But what’s really lovely about reading this book is seeing that science communication is always innovating. There have been crises throughout our modern history, but science communication is always changing, bringing in new people and skills, and responding to the social, political, and economic circumstances that we’re in. There’s no endpoint.

    Another thing that this project confirmed for me was the importance of online science communication for the field. A lot of people are doing online work with very few resources, and I think one of the things that governments, professional associations, and research organizations can do is to better support them. If we’re keen to celebrate good science communication in the field, then we need to look at what people in the community value—and it’s happening online.

    “There have been crises throughout our modern history, but science communication is always changing, bringing in new people and skills, and responding to the social, political, and economic circumstances that we’re in. There’s no endpoint.”

    Michelle Riedlinger

    What are some takeaways you hope the book leaves readers with?

    GB: I’m happy that this important book is open access, so that it may impact the science communication community worldwide. With access to all chapters, we can be inspired by different practices but also value the particularities of every nation. Science communication efforts can involve different motivations, publics, and actions according to the scenario, culture, and policy it is exposed to. It is an important publication for students and practitioners of science communication—a resource to help communicators identify with our huge, international community as well as better understand the influences of our practice.

    Researchers in New Zealand discuss the mauri of Te Kete Poutama within Waitaha Ariki Kore, ancestral house of Tohia o te Rangi marae, Kawerau. Left to right: Colleen Skerrett-White, Tomairangi Fox and Dan Hikuroa, November 2011. Photo courtesy of Ngā Pae o te Māramatanga, via ANU Press

    MR: I don’t think this is the kind of book that readers will read from cover to cover. I think they will dip in and out of it. But I’d like to think that readers will leave this book thinking about what they might do within their own sphere of influence to support innovative science communication. I’m thinking about governance, government and commercial support, and community action. I think this book also highlights science communication’s roles in benefiting communities, because science communication isn’t an end in itself. It does work for our communities and societies. For me, the stories of collective action in this book are something to celebrate. I’d say they might inspire a way forward.

    Another thing I love in this book is the focus on the interaction between scientific knowledge and Indigenous knowledge in many nations. The New Zealand chapter is a wonderful example, with stories about Maori science and what researchers are learning through it. But there are big challenges too. For example, the South African chapter describes the challenges associated with creating a scientifically literate society while juggling government priorities, Indigenous knowledge systems, and modern science. I think a focus on diversity, of values and peoples, will only increase for science communication. This is one of the things that came out of the mapping work: many young science communicators working online are advocating for a more diverse science and technology community, and this includes a more diverse science communication field. I think that’s a wonderful direction for our community.

    Communicating Science: A Global Perspective (2020) is available for purchase or free download from ANU Press. Celebrate its digital launch on September 15 (1-2 PM London UK time).

    By: Alice Fleerackers

  • 01 Oct 2020 4:44 PM | Anonymous

    A flying beetle’s-eye-view of some low-growing Canada anemone (Anemone canadensis).

    As summer heats up, daisies add their splash of white and yellow to chicory’s bright blue blooms to break up the monotone green of road verges across Ontario.

    Of course, daisies (Leucanthemum vulgare) and chicory (Cichorium intybus) are late comers to the party, well behind Taraxacum officinale – dandelions.  Among the first wildflowers of the spring, they dot fields with bright yellow and frustrate lawn lovers across the country.

    While these plants are a perennial frustration to gardening humans, a field of weeds is an all-you-can-eat buffet to pollinators like bees and nectar-sipping butterflies.

    Beetles, bees and butterflies are under threat from human factors such as habitat loss, pesticide use and climate change. Monarch butterflies, who primarily eat milkweed, have seen their population shrink 90 per cent in recent years.

    Wildflowers are native plants that grow happily on undisturbed and herbicide-free land like road verges – the strips of land between roads and sidewalks. Research shows  these small grassy patches might be a haven for declining pollinator populations. 

    The Indian paintbrush’s (Castilleja miniata) scarlet petals can make a masterpiece of any dull roadside.

    Roadsides are often lush and lively due to the extra water they enjoy from rain runoff. Unfortunately, cities often meet these vivacious displays with vigorous cutting and regular chemical treatments for both aesthetics and safety (overgrown roadsides can reduce drivers’ visibility).

    Can there be equilibrium between urban and ecological demands? 


    In a technical guide for enhancing, managing and restoring roadsides for pollinators, Pollinator Partnership Canada details how to design a pollinator-friendly roadside.

    Municipalities can actively seed roadsides with native flowers. Or, they can choose to restore the verges to mimic natural prairie grasslands, an ecosystem in which local pollinators naturally thrive.

    Pollinators need flowering plants throughout the spring and summer season. This allows them to nest, feed and breed.  

    According to the Wildlife Trust, cutting too early can be harmful. “Many wildflowers will not have a chance to flower or set seed and habitats and destroyed in the process.” 

    Overgrowth can be harmful, too. Competitive plants squeeze out the essential flowering ones. The Wildlife Trust recommends delaying cutting until August and the Pollinator Partnerships suggest even waiting until the fall.

    Small changes like slowing mowing speed and cutting higher can support healthy roadsides, too.

    Although it is a invasive species in Canada, the purple loosestrife (Lythrum salicaria) is an excellent food source for the hungry Cabbage White butterfly (Pieris rapae).

    In a 1992 British study, ecologists’ liveliest test road verges attracted 23 of the 34 butterfly species that inhabit Britain’s best nature reserves. This means that despite their proximity to fast-moving cars, the roadsides were an attractive habitat for the pollinators.

    Daises (Leucanthemum vulgare) and bird vetch (Vicia cracca) are wildflowers native to Eurasia. They’ve since spread to grassy patches and roadsides around the world. 

    Usually, road verges are uniform: They’re covered in a deep layer of soil, treated with fertilizers, and seeded with alien grasses. The pollinator-friendly verge, according to the study, has a range of plants, irregular topography and occasional, late-summer cuttings.

    Pesticides can also be a key factor in pollinator health. A direct impact of herbicides is a drop in available pollen and nectar. 

    Removing flowering species will reduce food for pollinators according to Pollinator Partnerships. They recommend keeping herbicides and insecticides as a last resort, such as when a stubborn invasive plant is damaging or out-competing native ones.

    The Goldenrod soldier beetle (Chauliognathus pensylvanicus) is a productive pollinator that you might mistake for a wasp. Can you spot all four on this sowthistle (Sonchus arvensis)?

    Insecticides can also be poisonous for non-target bugs. They can persist in soil for years, trickling to parts of land, such as roadsides, that never needed treatment. 

    Well-managed roadsides designed with healthy ecology in mind support native plants, host local wildlife and boost pollination throughout the spring and summer.

    With hundreds of thousands of kilometres of roads and roadsides, seemingly minor verges can be a vibrant ecosystem for local plants and pollinators. 

    Let’s all share the road: buses, bikes, bees, and butterflies.


    By: Adenieke Lewis-Gibbs

    Adenieke Lewis-Gibbs is a Journalism and French double major at Carleton University. Her pastimes include reading, painting and enjoying the outdoors - real jungles and concrete jungles alike. She is a repeat sustainability and circular economy writer and a both a big fan and a big sceptic of recycling. She is just as excited move back home to Toronto after school as she is to travel the world.

  • 24 Sep 2020 4:05 PM | Anonymous

    A new blood test promises to help detect Alzheimer’s disease, the most common type of dementia.  Photo by Amornthep Srina from

    A new blood test in development by researchers in the United States, Sweden, and Canada promises to give physicians an inexpensive, comfortable, and more precise tool to help them diagnose the leading form of dementia: Alzheimer’s disease.

    As the population ages, it is no surprise that Alzheimer’s is the most prevalent neurodegenerative disease worldwide, afflicting more than 44 million people. With an increased number of cases and limited treatments, it would be beneficial to detect Alzheimer’s early for a better prognosis.

    Currently, Alzheimer’s is detected through visible symptoms such as frequent forgetfulness, poor decision making, mood changes, and losing track of time. Once referred to a neurologist, a patient suspected of having Alzheimer’s may endure painful spinal infusions, uncomfortable and claustrophobic MRI and PET chambers, and various other invasive tests.

    Thoroughly going through all the requirements for a proper Alzheimer's diagnosis takes time. It almost seems surreal that a simple blood test could diagnose a disease with such a reputation for a lengthy and difficult process of diagnosis.

    Not only would it be better to detect Alzheimer’s for better control of the disease, but it would also allow for a less invasive and timely procedure than to what is currently being offered. 

    Tau is a key indicator of Alzheimer’s disease and therefore this blood test. Here’s why.  

    Tau is a phosphorylated protein. This in itself is normal; phosphorylation is a chemical change that is involved in cell growth, cell signalling, and apoptosis (that is, telling a cell to die when it has reached the end of its normal life cycle). Specifically, it is when a phosphoryl group (composed of one phosphorus and three oxygen atoms) is added to proteins that contain the  amino acids threonine, tyrosine and serine.

    When phosphorylation goes awry for the Tau protein, it aggregates into clumps known as neurofibrillary tangles. These tangles are the primary indicator for Alzheimer's disease. It is thought that the onset of disease begins when Tau is phosphorylated at certain Alzheimer’s-prone sites. 

    For their blood test,  the researchers measure the concentration of ptau181, a version of Tau that is phosphorylated at a specific site (181) on the protein

    Using this measurement, they were able to see the difference in protein levels between the blood of healthy individuals and that of people with Alzheimer's. This test is being compared with  PET scans and spinal fluids to ensure the results were in fact positive and accurate

    While the results are promising the blood test is still in development and likely years from release.  

    If it does make the grade, this test will be of great value in primary care settings. Individuals with a family history of Alzheimer’s could easily request the test to get an indication of early cognitive impairment. 

    This test could also provide a simpler and more accessible way for known Alzheimer’s patients to follow the progression and prognosis of the disease

    To be sure, there are still many trials that need to take place to ensure safety and accuracy of this test, but knowing that future and current generations may have better tools to control and prolong their quality of life is science worth celebrating.


    By: Roxaneh (Roxana) Zaminpeyma     


    Roxana is a McGill graduate who holds a Bachelor’s degree in Anatomy and Cell Biology with a minor in Social Studies of Medicine. She is currently a candidate for a Masters in Experimental Surgery at McGill. She is an aspiring clinician-scientist who is passionate about immunology, neurodegenerative research, patient advocacy, humane caregiving as well as medical history and technology. Her goal is to translate scientific content into words and images that can bring understanding to all her readers.

  • 17 Sep 2020 4:43 PM | Anonymous

    Technology has been helpful in keeping people connected in long-term care. But is this enough to offset the trauma caused by the pandemic? Photo: Georg Arthur Pflueger,

    Long-term care is one of the sectors hardest hit by the pandemic. This much is revealed by the high death toll in long-term care homes, the lack of proper action from many of these places, and—as was the case west of Montreal—the literal abandonment of long-term care residents.

    Amid the chaos is a second tragedy that few have talked about so far: residents’ mental health. As Canada re-opens, this issue should not be left behind.

    For a long time, it has been an open secret that loneliness, social isolation, depression, and anxiety are common among older adults in long-term care homes. In 2010, for example, 44 per cent of older adults living in long-term care had a diagnosis or reported symptoms of depression, according to a report by the Canadian Institute for Health Information. 

    The reality is, if you are in long-term care, you may be more at risk of psychological distress. And there are some driving factors that can put certain older adults more at risk than others. 

    One such factor is disability. Many people are admitted to long-term care when they are physically or mentally unable to take care of themselves. This loss of independence, depending on their ability to cope, can lead to depression.

    Another is change in environment. When a person transitions to long-term care, they might be stressed or anxious about what the future holds for them. This isn’t helped by the fact that many long-term care homes resemble hospitals more than actual homes—which can lead to further feelings of alienation and discomfort among residents. 

    And yet another factor, and perhaps the most tragic, is the notion of grief at the loss of loved ones. Grief is already enough to put a person’s mental health at risk. But combined with disability and living in an unfamiliar environment, it can further set the stage for anxiety and depression.

    In May of this year, long-term care residents made up 81 per cent of all COVID-19 related deaths. It’s therefore not hard to imagine that rates of depression and anxiety would increase among the survivors. 

    Surviving residents bore witness to the death of their friends and neighbors, all while coping with their own feelings of isolation and uncertainty related to the virus. Going forward we might expect residents to be consumed by a whole new level of grief and trauma.

    On the bright side, there are many things we have done to stay connected to residents during the pandemic. Children have organized letter-writing campaigns, volunteers are teaching residents to do video calls, families visit and have played music outside of residents’ windows.

    These efforts are good, but they should only be a start. There remains a dire need to address the mental health of long-term care residents, especially as the trauma of the pandemic sets in.

    As Canada re-opens, long-term care must stay on the agenda. And mental health needs to be part of the conversation. 

    A good place to start is to give experts in geriatric psychology a platform to bring forward recommendations and have a serious discussion about the mental health of residents in long-term care.

    Another would be to take a serious look at how we structure our long-term care services and evaluate whether we are truly meeting residents’ emotional needs. 

    We have all been shocked by the pandemic, some more than others. 

    In long-term care, we’re learning that it is one thing to survive, but it is another to actually feel alive.

    By: Eric Dicaire

    Eric Dicaire is a communicator and thinker based out of Ottawa, Canada. He currently holds a Master’s degree in Communication from the University of Ottawa, and is the communications coordinator for the Bruyère Research Institute. He enjoys examining how people think about and interact with media, and how these interactions influence public discourse in Canada. He aspires to be a life-long learner, looking for new ways to challenge his own biases and exploring new concepts and ideas.

  • 10 Sep 2020 4:43 PM | Anonymous

    Photo by Vicious Bits, Creative Commons.

    Recent research by a team of Canadian biologists, supports critics who've long argued that wolves are being sacrificed unnecessarily in efforts to save iconic mountain caribou in British Columbia and Alberta from possible extinction. Since the 80s, authorities in the two provinces have been conducting "culls" which have probably killed thousands of wolves since. 

    Culls involve either shooting the animals from helicopters, poisoning them or, in at least one case - an eight-year campaign of sterilization.

    Mountain caribou (Rangifer tarandus), one of Canada's most iconic species. A Creative Commons photo.

    Yet caribou populations all over Canada, continue to plummet. Thanks to declines in all sub-species, they're now classified, nationwide as either threatened or endangered. 

    Some of the steepest reductions have occurred in mountainous regions in the two westernmost provinces. A few years ago, they were declared extinct south of the border, in the contiguous US.

    Now, a team of experts from western Canada, is taking aim at a study published last year. It supports culling and the penning of pregnant caribou as ways to slow or stop their slide toward extinction. Such findings have been used by governments to justify their "predator control" policies.

    Yet this newest evidence states flatly, there's simply no "statistical support" for such a position.

    While wolves may account for more than half of caribou predation in other places, "Deep-Snow Mountain caribou" are far less likely to be killed by wolves than by other predators. Yet their numbers have crashed an alarming 45% in recent decades, possibly the steepest decline of any caribou ecotype in the world. (These herds live in southeastern BC, where, as their name implies, winter snows can pile up to three meters deep.)

    "Wolves do not comprise the primary source of mortality for Deep-Snow Mountain caribou," the report finds, "constituting only 5–10% of verified cases of mortality - in fourth place after cougars, bears and wolverines." The authors point out, therefore, that it is wrong to apply a "one-size fits all" approach when it comes to wolf culls.

    Besides, cullings ignore a long-accepted reality. It is loss of habitat due to human activity such as logging, which is the main driver of population decline.

    "Despite warnings that industrial resource extraction, primarily forestry, was detrimental to maintaining viable caribou populations, habitat modification, fragmentation and associated road-building increased over subsequent decades."

    Since the "Deep-Snow" herds depend on lichen that grows on old growth trees, above the snow-line for food, their world is therefore especially "incompatible with large-scale clearcut forestry."

    "Logging," reads the study, also "leads to increased predator densities and greater access to caribou via clearcuts, roads, snow compacted by snowmobiles, and the loss of forested refuges. Snowmobile and heliskiing harassment are pervasive across the range of Deep-Snow Mountain caribou (ECCC 2018) and impose potential harm during winter and spring calving. Snowmobile harassment has been acknowledged as an increasingly important factor in Deep-Snow Mountain caribou winter ecology."

    The study’s lead author, biologist Lee Harding, believes the importance of wooded habitat to caribou survival, cannot be overstated.

    ”Forests provide caribou with refuge from wolves and separation from other prey animals, including elk, moose, and deer. Without them, caribou must constantly be on the move to find food, exposing them on all sides. Predators are just one of the hazards."

    The need for conserving caribou populations, warn the authors, "is now urgent and carries large economic, ecological, cultural and social implications.

    By: Larry Powell

    I’m an eco-journalist living in Shoal Lake, Manitoba, Canada.

    I’m pleased to announce, I’ve just joined an international team of writers, telling “animal tails” (all true) on the online website, “Focusing on Wildlife – Celebrating the Biodiversity of Planet Earth”(FOW).

    Please read my FOW stories here.

    I’m also a member of the Science Writers & Communicators of Canada and the American Association for the Advancement of Science. 

    I’m authorized to receive embargoed material through the Science Media Centre of Canada, the Royal Society, NatureResearch and the World Health Organization. This can allow me to “get a jump” on important Earth Science stories by fleshing them out with fact-checks and interviews, in advance. This can arm me with a “hot-off-the-press” story – sometimes stranger than fiction - the moment the embargo is lifted.

    I publish the blog, (PinP), the perfect antidote for fake news! 

    And you can email me at:


P.O. Box 75 Station A

Toronto, ON

M5W 1A2

Powered by Wild Apricot Membership Software