Menu
Log in
Log in

SWCC Blog

Do you want to write for the SWCC Blog? If so, please review the following guidelines and then send your ideas to blog@sciencewriters.ca. Someone will be back in touch with you!

The SWCC Blog Editor is Cristina Sanza. Cristina is a Digital Journalism Instructor and Writing Coach in the Department of Journalism at Concordia University in Montreal. There, she also organizes the Projected Futures international science journalism graduate summer school and edits the department's digital magazine. Formerly an SWCC board director, she currently serves as the blog editor and a member of the digital media committee. Outside of work and volunteering, Cristina loves resistance training, developing high-protein recipes, and tending to her garden.

  • 31 Dec 2020 11:19 AM | Anonymous


    Compassionate psychelics: easing anxiety and depression in the dying

    This article discusses topics relating to end-of-life depression and anxiety. If you require mental health support, please see the resources at the bottom of this article.

    In August 2020, four terminally ill patients were granted permission to use psychedelic therapy in Canada. They were given psilocybin, the hallucinogenic component of what are popularly called “magic mushrooms,” to help ease their anxieties and depression at end-of-life.

    End-of-life care involves helping someone remain comfortable at the end one’s life. Physicians will use palliative practices, that is, those aimed at alleviating things like pain and shortness of breath and providing support through death for patients with life-threatening conditions. Palliative care doctors use this kind of treatment when a condition is deemed unfixable. 

    Dr. James Downar is a researcher and head of the division of palliative care at the University of Ottawa. 

    “There are times when you can’t actually fix the problem—but you may be able to reduce the effect it has on a person,” he says.

    Most will remember psychedelics as a relic of the 1960s. They are often associated with this decades’ many counter-culture movements, particularly among hippiesmusicians and cultists alike. 

    When taken in high doses, psychedelics have strong effects on a person’s perception of the world. Users might experience hallucinations and confused senses, tasting colors and smelling sounds. On the flip side, people might also experience what is known as a “bad trip.” This can manifest as an intense fear or paranoia.

    These substances can also induce rich, spiritual-like experiences, which is a big part of why they got so popular in the 60s. Early users would often report feelings of connectedness, love, and compassion for others—feelings that would remain long after the hallucinations disappeared.

    Researchers are still trying to understand exactly how psychedelics work. But there is a surprising number of studies that suggest they might be able to help treat mental health. Some experts hope to leverage these spiritual side-effects to help people overcome conditions such as depression and anxiety.

    This is what makes the drugs so appealing for palliative care. 

    “Our interest in palliative care is relieving suffering,” Downar says. “What is becoming increasingly apparent is that suffering can occur on many different levels.”

    One of those levels is known as “existential suffering.” 

    “One of the most concerning things about disease is its ability to rob you of doing the things that you enjoy,” Downar explains. “These can be things like work, art, hobbies—all things that give people joy and meaning in life.”

    When a person thinks they will never again experience meaningful activities, they can fall into a deep depression. This is the core of existential suffering, he says.

    Downar explains that psychedelic therapy can help people come to terms with their distress, reduce their existential suffering, and help them find meaning at the end of life.

    This interest in psychedelics as a therapeutic tool may be surprising, but it is not new. Use of the drugs has a long and surprising history in Canada. So, why did it take so long for them to pick up steam in the medical community?


    Psilocybe cyanescens Wakef mushrooms, commonly called “Wavy Caps,” are one of the many species of mushrooms that contain psilocybin. Source: Vancouver Mycological Society.

    The story of psychedelic therapy in Canada is almost as “trippy” as the drugs themselves, stretching from rural Canada to Los Angeles, threading through the lives of a Swiss scientist, a British war veteran, and a prolific science fiction author.

    This is not an exhaustive history of psychedelics in Canada. But below is an outline of some of the surprising connections that surround these powerful substances. So, let’s take a trip, shall we?

    This story begins with the arrival of Dr. Humphry Osmond. Osmond was a British World War II veteran who after the war worked on the psychiatric unit at St. George’s Hospital in London, England. There, he developed an academic interest in mind-altering drugs and substances. 

    Osmond and two colleagues began experiments with mescaline, the psychoactive component of peyote cactus. After two years of study, they found that this chemical would induce symptoms similar to those observed in people with schizophrenia. 

    Osmond’s use of chemicals ran counter to traditional therapeutic approaches. His colleagues were keener on psychoanalysis—the process of treatment and diagnosis through open conversation between therapist and patient.

    As a result, Osmond moved to Weyburn, Saskatchewan in October 1951 and took over as clinical director of the now-defunct Weyburn Mental Hospital.

    At the time, this hospital had a reputation as one of the worst asylums in North America, explains Erika Dyck, a medical historian at the University of Saskatchewan.  But Osmond felt that here he would have more freedom to continue his explorations with mind-altering substances. He was right.

    The 1950s was a period of great change for Saskatchewan. Tommy Douglas, premier of the province at the time, advanced what was considered a radically progressive agenda, one that ultimately laid the groundwork for universal healthcare in Saskatchewan and in Canada.

    Douglas’ progressive attitude towards healthcare made the province an attractive place for health researchers.  

    “People were coming to witness this experiment unfolding,” explains Dyck. “It became a trading zone for ideas that were infused with a political vision for the future, for what kinds of things we can expect for our healthcare system.”

    This is the context in which Osmond would begin his experiments with lysergic acid diethylamide (LSD).

    LSD is a synthetic hallucinogen accidentally invented by Albert Hoffman in Switzerland long before Osmond arrived in Canada. Hoffman consumed a small quantity of the drug while synthesizing it, leading to mild symptoms, including dizziness and restlessness. Once he identified LSD as the source of his symptoms, he took a remarkable next step – self-experimentation. Hoffman went on his first trip.

    He was anxious and afraid at first, as his hallucinations were understandably unexpected. Eventually, his anxieties went away and he was left to enjoy a kaleidoscope of colors dancing before him. He later wrote on how the experience was a net positive.

    Years later, Osmond spent his time trying to understand how and why LSD had such a powerful effect. He hypothesized that it could be used therapeutically in the Weyburn Mental Hospital.

    One of Osmond’s patients stated that while under the influence of LSD he learned to address his life problems with new-found conviction. This, in turn, helped him find a more positive outlook on life and forge better relationships with himself and others. These feelings continued long after the immediate effects of LSD disappeared.

    Parallel to these experiments, Osmond also learned about another potential use for LSD in end-of-life care. 

    Osmond became good friends with the famous science fiction author Aldous Huxley, who lived in Los Angeles—far from the winds of Saskatchewan – but they bonded through regular letters which document Osmond and Huxley’s evolving perspective on psychedelics. Together, they explored the spiritual nature of the substances, and Huxley introduced Osmond to the potential power of psychedelics for end-of-life care.

    Huxley told Osmond about the profound experience he shared with his wife Maria, who was suffering from cancer. As her health deteriorated, she was spending more time unconscious. But Huxley and Maria both had an affinity for psychedelic drugs. Together, they had spent a lot of time learning from the Indigenous communities in the United States who often used psychedelic substances in healing rituals to help overcome anxiety at end-of-life. 

    “This was a way to help release the mortal bonds of life,” Dyck explains.

    On Maria’s deathbed, she and Huxley consumed psychedelics together. Huxley later described to Osmond how the psychedelic substances helped both him and Maria find peace in these final hours. The experience was so profound, Huxley requested the same treatment as he was dying, and finally died of throat cancer on November 22, 1963. 

    Psychedelic research largely halted after the 1960s. The “hippie” movement came and went, and the substances were seared in the public consciousness as dangerous, addictive, and unpredictable. This era left behind a lasting stigma that continues to make some palliative care physicians reluctant to embrace the drugs, Downar explains.


    Medical historian and Canada Research Chair Erika Dyck. Photo: University of Saskatchewan

    Some elements of psychedelic therapy also do not fit the model of healthcare that Canada has adopted, Dyck says.

    Many psychedelic-trained psychiatrists would be necessary to help people use the substances safely and to maximize the chance of positive outcomes. This makes it difficult to widely adopt the therapy, especially since there are many other medications that can help treat depression or anxiety—many of which require much less professional supervision.

    Downar says that “micro-dosing,” a method of consumption involves taking small amounts of the psychedelic substance, might be a way to mitigate this. Small doses can stimulate the brain but not enough to induce strong hallucinations, allowing psychedelics to be used with less direct supervision. More research needs to be done before this can made a reality.

    In some ways, palliative care is the perfect place to explore psychedelic therapy, as end-of-life can be a time for finding deep meaning and reflection. Palliative therapies must concern themselves as much with the spiritual as with the physiological elements of dying, Downar says. 

    Can psychedelics be transformative for carrying out palliative care? That remains unclear, but Downar says it is worth exploring if it can reduce end-of-life suffering. 

    If you need resources or assistance surrounding mental illnesses, please visit the Mental Health Commission of Canada’s websiteto learn more. You can also find palliative care resources on the Canadian Hospice and Palliative Care Association website.

    This article is based on research conducted by Erika Dyck, PhD. Learn more about her work.

    By: Eric Dicaire

    Eric Dicaire is a communicator and thinker based out of Ottawa, Canada. He currently holds a Master’s degree in Communication from the University of Ottawa, and is the communications coordinator for the Bruyère Research Institute. He enjoys examining how people think about and interact with media, and how these interactions influence public discourse in Canada. He aspires to be a life-long learner, looking for new ways to challenge his own biases and exploring new concepts and ideas.

  • 24 Dec 2020 11:01 AM | Anonymous

    Winning the Science Writers and Communicators of Canada People’s Choice Award for Science Online is a significant achievement. Winning the award a second time confirms that Let’s Talk Science has the formula for enduring quality. 

    But where did their scicomm journey begin? Vanessa Nelson, Vice-President of External Relations at Let’s Talk Science recounts the organisation’s humble inception and shares their plans for their future.

    Nearly 30 years ago, President and Founder Bonnie Schmidt recognized that elementary school educators were receptive to support for teaching science and technology and making it engaging for their students. She saw that teachers struggled with garnering and keeping children’s interest in the sciences.

    “It can be challenging to engage children and youth in science,” Nelson says. “It requires a little bit more connection and understanding to engage kids. They need to understand and see relevance.”

    According to Nelson, Schmidt started working directly in classrooms, volunteering with educators and finding ways to “show kids how exciting STEM could be.”

    Since 1991, Let’s Talk Science has grown from two or three volunteers like Schmidt to more than 70 people located across the country. The team now collaborates with more than 50 colleges and universities across Canada. The charitable organization relies on funding from governments, corporations, foundations and individuals to provide resources and programming at no charge.

    Their focus? Creating interest in science that lasts so kids stay in the subjects longer … and develop the skills that they need to thrive and succeed. 

    A key activity for Let’s Talk Science is promoting careers in science. 

    “Be it from a hairdresser right up to a laboratory researcher: all of those [careers] require some sort of STEM skills and critical thinking,” Nelson says. 

    Volunteers go into classrooms (now virtually) and, in addition to delivering hands-on and curriculum aligned STEM activities, take the time to tell students about their studies or their working life, how they got there, and what their next steps might be. To further support career exploration, the Let’s Talk Science website has a dedicated career section for children and teachers that showcases unique current and future careers in science. 

    “If a kid doesn’t know that a job exists, how are they going to think to go into that field?” Nelson says.

    “I think every parent and teacher should be exposing kids around them to a range of career resources to give them an idea of what's out there, where a STEM education can take you."


    Let’s Talk Science is largely supported by its base of 3,500 volunteers.

    Let’s Talk Science is largely supported by its base of 3,500 volunteers.

    COVID-19 and a new game plan

    COVID-19 has changed the organization’s traditional outreach approach and their typical audience focus. They have transitioned to virtual outreach and online involvement in classrooms, and geared resources towards families.

    In some cases, this means adapting content that fits a less formal learning environment. 

    “We’re here to provide support and learning and engagement for education, no matter where it's taking place,” Nelson says.

    In the last nine months, the organization has developed an even greater appreciation of the value of STEM learning for innovation and finding solutions to complex human problems. 

    “COVID made STEM learning more relevant than ever,” Nelson says. “Every solution or approach to responding to the pandemic, be it medical, engineering, or design, comes through a STEM lens.”

    “Not every kid needs to be a scientist, but every kid needs to be able to think critically,” Vanessa Nelson says.

    Encouraging a generation of critical thinkers

    STEM and critical thinking go hand in hand, and Let’s Talk Science fosters these skills in all of their resources. 

    “How do you make sure that you have the understanding and the learning (children) need to make decisions and to think critically about topics? Our goal has never been to influence decision-making, but rather provide the scientific literacy that kids need.”

    The need for children to learn how to make sound scientific decisions and learn how problem-solve and innovate today and in the future is more important than ever as misinformation online surges.

    “Not every kid needs to be a scientist, but every kid needs to be able to think critically,” Nelson says.

    Let’s Talk Science aims to arm students with the skills they need to make decisions about climate change, viruses, and other real-world problems. It does not exist to advocate for a particular cause or to take a stance.

    Instead of focusing on vaccine denial, they talk about how vaccines are developed and how they work so that youth can understand. 

    “Then, kids don't need an advocacy position being taken,” Nelson says. “Provided with sound science learning, youth are well equipped to make sound decisions for themselves.”

    Building on this approach, in the coming years the organization will increase its focus on climate - not just climate change. What is climate and how does it work? What is its influence on our lives? How is it impacted by our actions?

    Let’s Talk Science has an ongoing project that allows classrooms to collect data to monitor the environment in the classroom. This allows the classes to monitor carbon dioxide and oxygen levels, humidity, and temperature and see how their actions affect these variables. 

    “What happens if you open a window? Do CO2 levels go down? This helps students understand the impact of their behaviours.”

    It’s all about relevancy

    The Let’s Talk Science team believes it is critical to translate science and research using concepts that children relate to. 

    “I think there’s a really strong need to make science learning accessible,” Nelson says. “It can become very technical.” 

    “A chemical formula may not mean a heck of a lot to a kid,” Nelson says. “But if you show them that it's how their Kool-Aid gets made … that's relevancy.”

    By: Adenieke Lewis-Gibbs


    Adenieke Lewis-Gibbs is a recent journalism and French graduate from Carleton University. She spends her free time reading or getting outside. Her favourite subjects to learn and write about are conservation, sustainability, and trees. Born and raised in Toronto, Adenieke recently packed up and moved to Paris, France to teach English for the school year.

  • 16 Dec 2020 2:49 PM | Anonymous member (Administrator)

    New research shows, two closely-related species of wild cats in Ontario, Canada, may face starkly different futures. Is this "survival of the fittest?

    Canada lynx (Lynx canadensis)

    Bobcat (Lynx rufus). Photos by US Fish & Wildlife Service.

    To the untrained eye, the two species might pass as overgrown house cats. They're actually "felids" or mammals belonging to felidae, a family of wild cats. 

    Both live side by side, north of Lake Huron (see map).

    Researchers at the University of Trent in Peterborough, Ontario, looked at bobcat and lynx numbers, movements and behaviour over three winters. 

    Their findings seem to show the bobcat holding an edge over the lynx in the struggle to survive, if not thrive in their rapidly-changing world. 

    The scientists are unable to give hard numbers. But, "harvest records" which document the numbers taken by trappers, offer an insight. 

    The lead author, Robby Marrotte, tells PinP, "We've noticed that the number of lynx harvested on traplines has decreased compared to 1960-80, while bobcat harvest has increased."

     (Ironically, while trapping has been known to diminish populations of fur-bearing animals, harvest records can also act as a sort of census - the more of a given species trapped, the higher their populations are likely to be.)  

    But there's more than just numbers at play here. Bobcats have also managed to expand their Ontario range northward, into territory previously occupied by the lynx. 

    And, while no regional breakdown is given, an earlier, large study on ungulates and predators in 2004, found the range of the lynx, continent-wide, had shrunk by a staggering 40% from its historical range.

    So why is this "world of the wildcat" unfolding as it is?

    The lynx is a "specialist," more dependent on the unbroken or homogenous cover of the boreal forest. It's therefore more vulnerable to human intrusion such as land clearing. 

    The bobcat, on the other hand, is a "generalist" who can better cope with a more open habitat and young, deciduous forests which often evolve after activities such as logging and road-building.

    So it is the bobcat, not the lynx, which is likely to be found in areas affected most by a human footprint. 

    And then, there's the matter of diet. The lynx feeds almost exclusively on the snowshoe hare and is vulnerable when hare populations crash. The bobcat on the other hand, preys on a variety of species, so has more to choose from. 

    The lynx has much larger feet, giving it a distinct advantage over the bobcat while hunting in deep snow. But deep-snow terrains are shrinking as manmade "global heating" does its work. This could remove yet another advantage from the lynx as time goes on.

    The two species do interbreed, but rarely. (The researchers never observed their footprints coming anywhere close to one another along snowmobile trails they used in their studies.)

    But, if bobcat numbers do increase, along with interbreeding, it's speculated this, too could contribute to the lynx's undoing. It could lead to gene dominance by the bobcat and even extinction for the lynx. 

    However, researcher Marrotte believes, talk of extinction is premature.

    "I wouldn’t say extinction or extirpation just yet. Right now, all it takes is a few good winters and denser snowshoe hare populations and the bobcat will move out and the lynx will eventually move back in. In the next decade, there might be more snow on the northern shores of Lake Huron, because moisture level will increase. This could temporarily benefit the lynx, but eventually this snow will just start melting earlier and the bobcat will be able to move in again."

    So, ultimately, it all comes down to this. 

    "The story of the bobcat and the lynx is one of the loss of a unique, boreal specialist due to anthropogenic change," concludes the study, "and eventual replacement by an adaptable generalist."

    By: Larry Powell


  • 26 Nov 2020 8:55 AM | Anonymous


    Dennis Patrick, a language assistant at the Stellat’en First Nations, seen here during the Elk-Tech event in Sept. 2019, describing the work he does at the First Voices program. (Photo: Peter Pulsifer, 2019). 

    Languages are essential in helping us navigate through and understand different cultures and their views of the world. The loss of a single language means losing valuable cultural knowledge.

    By the end of the century, it’s estimated that more than 40 per cent of the 7,000 languages spoken today are at risk of disappearing. 

    Canada, which has between 60 to 100 Indigenous languages, faces pressures from commonly spoken languages such as English, as well as a variety of social, political, and historical factors. 

    A 2016 census reveals that more than 260,000 people speak an Indigenous language on a conversational level. The most commonly spoken Indigenous languages include Inuktitut (from the Inuit language family) as well as Cree and Ojibway (from the Algonquian language family). 

    In recent years, a growing number of Indigenous youths have shown an interest in learning their ancestral languages. In addition to being an Indigenous right, allowing youth to learn their native languages carries benefits such as revitalizing their cultural identity. Communities where the Indigenous language is more widely spoken also report lower youth suicide rates.

    In the spring of 2019, professors Erik Anonby and Kumiko Murasugi from Carleton University’s School of Linguistics became the co-leaders of the Endangered Language Knowledge and Technology (ELK-Tech) group.

    Based at Carleton University in Ottawa, ELK-Tech unites experts and researchers from a variety of disciplines such as Indigenous studies, linguistics, as well as computer sciences. Their goal is to collaborate with Indigenous language communities to adapt and develop digital tools to help language learning and documentation.

    Most recently, Anonby, Murasugi and their partner, professor David Mould, a Carleton computer science professor and fellow leader of ELK-Tech, were among several Carleton research teams granted funding from the Canada Foundation for Innovation’s (CFI) John R. Evans Leaders Fund (JELF). Along with $64,000 granted by CFI, a matching grant of more than $32,000 offered by Carleton and an additional $64,000 to be funded by other partners, will contribute to help set up the ELK Centre, a physical space for the initiative. 

    “The goal at the centre is to bring together all the people who will be working towards the goal of language maintenance and revitalization,” said Murasugi.

    While the launch date for the ELK Centre is to be determined, Anonby confirmed that the University has set aside space for the centre.

    Murasugi also mentioned their focus is on technology and to develop digital tools that will be useful in the daily lives of Indigenous and minority language speakers. 

    Technology, Anonby said, is one of the main causes behind language endangerment “as part of globalization.” In terms of the internet, despite increasing language diversity, English is considered the dominant language. The more time people spend on English-dominated websites, the more their use of Indigenous languages – and by extension, their connection to the natural world – slowly declines.

    On the other hand, Anonby and Murasugi acknowledge that technology can be an effective tool for language revitalization and documentation.  

    “It offers potential for strengthening languages if it's used in ways that are meaningful for communities and are technologically and linguistically grounded or supported,” Anonby said.

    While technology is an important tool, it is not the sole solution.

    “Another key part of that is community involvement and community guidance in the design and use of the tools and also the control over the data that's collected through the use of the tools as well,” Anonby said.  

    Allowing communities to guide the process of strengthening their languages is an important part of this project.

    “It's not just us doing it and saying, ‘oh, look what we've developed’,” Murasugi said. “It's doing it in collaboration with the communities and asking them and discussing what would be useful to them and how we can help provide those tools.”

    The tools in question involve more than just automatic learning and language preservation in a digital database They also include encouraging collaborative learning and documentation. 

    “Because digital technology can be a solitary enterprise, we want to encourage people to use these tools together,” Murasugi said. 

    Most recently, the COVID-19 pandemic has introduced new challenges and restrictions in terms of research and communication. As a result, the ELK-Tech team, as well as other organizations and programs focusing on language revitalization efforts such as First Voices, will be forced to modify how they interact and collaborate with Indigenous language communities in ways that work best for them. Especially communities with limited technological access.

    Due to the threat posed by COVID-19 on Indigenous and minority language communities, Anonby mentioned there is a growing urgency for language revitalization efforts. Elderly, fluent speakers of these languages are especially vulnerable, which makes their cultural and linguistic knowledge even more valuable. The ELK Centre initiative aims to help pass this vital knowledge down to future generations before it's too late. 

    “Language is a living phenomenon. The work that we do is especially focused on strengthening language as something living within language communities,” Anonby said.

    By: Matthew Guida


    As a native Montrealer, I graduated from Concordia University with a BA in Anthropology and a minor in Film Studies. I am currently studying for my master’s degree in Journalism at Carleton University in Ottawa. My interest in journalism began while attending Concordia. I was a frequent contributor to the university’s independent newspaper, The Concordian. I further honed my skills and experience by working as a List Writer for the entertainment news website Screen Rant. Since I started attending Carleton University, I have strived to further improve my skills as a journalist in not only print, but also in the fields of data, investigative and broadcast journalism. In the past year, I have also developed a growing appreciation for radio journalism and podcasts. My current interests lie in studying the future of the journalism industry, writing and researching pop culture and social media trends, as well as furthering my career in the field of journalism.


  • 19 Nov 2020 8:43 AM | Anonymous

    The concept of human races has been around since 1735 when Swedish naturalist Carl Linnaeus proposed a classification system placing humans into four distinct “races” based on perceptions of skin color and geography.

    However, over the last eight decades, many biologists and physical anthropologists have increasingly argued that race is, and has always been, an artificial social construct rather than a scientific fact. They maintain that the continued use of the race concept hinders scientific truths about human diversity and that race should not be used as a variable in science-based endeavors, especially in medical research. 

    Should science writers and science communicators - important links between scientific minds and nonscientific minds - get actively involved in the campaign against using the race concept to explain human diversity?

    Looking at the science may be helpful. 

    We all know that genes hold the “blueprints” for life. Alleles, located on specific genes, produce a variety of observable characteristics, called “phenotypes.” We and our genes live in “gene pools,” a term used to account for all of the phenotypic variations in a given population. Genes “flow” in and out of gene pools as people wander the Earth and, sometimes, produce offspring with people who are phenotypically greatly different than themselves. 

    When genes and the traits they carry “flow” in and out of a gene pool the result can be a mosaic of physical features, combinations of features which may or may not conform to stereotypic characteristics typically thought of as representative of one “race” or another. 

    It useful to remember that the distribution of phenotypes in the premodern world was more geographically restricted than today because oceans, mountains and great distances did not allow people to easily “mix” their genes. Phenotypes tended toward local similarity.

    In 1989, when I was a graduate student in anthropology and also the media relations person for the American Anthropological Association, anthropologist Leonard Lieberman and colleagues published “Race and anthropology: A core concept without consensus.” The authors maintained that the race concept was losing credibility as it was based on "imaginary clusters of traits."

    They also pointed out that there is often as much - or more - phenotypic variation within perceived races than between them. To speak accurately about human phenotypic diversity, the authors advocated the model offered by Frank Livingstone in 1962 when he said (now famously) "there are no races, only clines." 

    A cline, first described by evolutionary biologist Julian Huxley in 1938, is a construct for explaining how phenotypes, such as skin color, eye lid shape, hair texture and blood types, even genetic susceptibility to diseases, vary in prevalence within populations and over a geographical gradient. A cline can show how traits – when considered one-by-one rather than together– may be strongly represented here, but gradually appear less often, or eventually not at all, there.

    A cline can also be used to demonstrate the prevalence and geographical patterns of genetically based diseases, such as the sickle-shaped red blood cell trait that can cause sickle cell anemia, and Tay-Sachs disease, a rare nervous system disorder. A cline can show high prevalence of the sickle cell trait in West Africa and some areas of the Middle East, but also shows how little the trait appears, if at all, in East or South Africa. 


    Lieberman and colleagues added that cline could not be used to replace race – it is a greatly different, yet accurate concept. 

    In 1970, Thomas Kuhn suggested in The Structure of Scientific Revolutions that a paradigm, a mental model, is prerequisite to perception. Kuhn said that once a paradigm is constructed, anomalies, or "minor breakdowns" within the paradigm, create tension in the model. "As time goes by and new demands are made on the lexicon, conditions may be encountered that defy description," Kuhn said. 

    Kuhn concluded that a conceptual paradigm shift can be expected when anomalies become “incommensurate” with the concept. Such is the case for race.

    All classifications are dependent upon descriptive language, yet the lexicon often becomes inadequate to the descriptive task as contrary new concepts and theories are validated. New words must come into use to support descriptive accuracy. If “race” defies valid scientific description, that reality also makes demands on the language we use to describe human variation. 

    If race is not a legitimate concept and, therefore not a useful variable for science, should it be a legitimate concept for science writers and science communicators?

    The argument for science writers and science communicators to get involved in the no- such-thing-as-race effort is that, like scientists, we are obligated to present valid scientific explanations of the world and of ourselves. That responsibility should probably include presenting accurate scientific models for explaining human diversity. 

    The argument against science writers and communicators enlisting in the “no-such-thing-as -race” effort is that we are not charged with the responsibility of correcting scientists - should they use the term. We are charged only with accurately reporting on the information scientists generate. 

    By: Randolph Fillmore


    Randolph Fillmore is a science and medical writer and an adjunct professor of anthropology and mass communications at Hillsborough Community College in Tampa, Florida, USA. He is the director of Florida Science Communications (www.sciencewriter.ink), a member of the National Association of Science Writers in the U.S. since 1994, and has recently joined the Science Writers and Communicators of Canada.

  • 14 Nov 2020 10:48 AM | Anonymous member (Administrator)

    Photo by Stevepb. Taken from Pixabay.

    In 2014, a new antidiabetic medication was approved by Health Canada. Known as Invokana, or canagliflozin, it was the first in a new class of antidiabetic drugs known as sodium-glucose cotransporter-2 (SGLT2) inhibitors. 

    “For 20 years, we really did not have any new treatments that slowed down the progression of kidney disease,” said Dr. Hitesh Mehta, a staff nephrologist at the William Osler Health Center and director of the Regional Kidney Wellness Centre in Brampton, Ontario. “There has been really nothing until the development of SGLT2 inhibitors that have shown progress in slowing down kidney disease.” 

    Diabetes Canada—the country’s leading source for diabetes care, advocacy, as well as research—estimates that out of the three main types of diabetes, type 2 accounts for 90 to 95 per cent of diabetes cases, especially among children.

    “We know diabetes is a disease that, if not controlled properly, can lead to a lot of complications, including kidney disease,” said Dr. Harpreet Bajaj, an endocrinologist and director of late-phase research at LMC Healthcare, as well as a research associate at Mount Sinai Hospital in Toronto. 

    Studies also show that about 40 per cent of type 2 diabetes patients are at risk of developing diabetic or chronic kidney disease. People with diabetes are at risk of suffering damage to their kidneys’ blood vessels due to high blood glucose levels and high blood pressure. This occurs over a period of time but can be avoided by taking appropriate steps.

    According to Bajaj, studies conducted between 2015 and 2018 with SGLT2 inhibitors originally determined they were effective in helping people with a history of heart-related problems. 

    A 2019 study revealed that the use of SGLT2 inhibitors not only provided cardiovascular benefits but also proved to be an effective treatment option for patients with type 2 diabetes and diabetic kidney disease. 

    In Diabetes Canada’s recent clinical practice guidelines published in the Canadian Journal of Diabetes, SGLT2 inhibitors are recommended for patients with a history of heart failure and chronic kidney disease and are also proven to reduce the progression of nephropathy (kidney disease) and hospitalization resulting from heart failure. 

    Prior to the introduction of SGLT2 inhibitors, methods used to protect the kidneys included the glucose control and the use of angiotensin-converting enzyme (ACE) inhibitors, which help relax blood vessels and control a patient’s blood pressure.

    “This is the fourth thing (SGLT2 inhibitors) we can add on to that list, which is important so we can protect people with diabetes from getting kidney complications and going off to dialysis or transplants,” Bajaj said.

    Mehta said that during the big kidney disease treatment trials such as CREDENCE and DAPA-CKD, patients showed improved results such as a 30 per cent reduction in the progression to dialysis after starting on the SGLT2 inhibitors.

    “We finally have drugs that are slowing down the progression of kidney disease to the point that hopefully, in the future, we'll have fewer patients on dialysis.”

    Mehta said both the CREDENCE and DAPA-CKD trials finished early because the results were so positive. Currently, there is one ongoing trial, EMPA-KIDNEY, which will provide additional insights into the rest of the SGLT2 inhibitor class. 

    Presently, only four SGLT2 inhibitor agents are approved for use by Health Canada and the United States Food and Drug Administration. Only Invokana (canagliflozin), Forxiga® (dapagliflozin) and Jardiance (empagliflozin) are commercially available in Canada. 

    SGLT2 inhibitors are also not approved for use on patients with only type 1 diabetes in Canada and the United States. In Europe, Forxiga is approved as an adjunct to insulin treatment in adult patients with uncontrolled type 1 diabetes. 

    Bajaj said the only possible competitor for SGLT2 inhibitors is an agent called Semaglutide, which is part of the GLP1-RA class of agents. While originally only available as an injection, it is now available as an oral tablet and is approved by Health Canada. This medication has been shown to help reduce blood sugar, blood pressure and weight. While some studies suggest possible protection from heart disease, it is unknown if it provides any protection against kidney disease. 

    Another major benefit of the SGLT2 inhibitors, as shown in the DAPA-CKD study, is that they are not limited to just diabetic kidney disease. 

    Mehta said being able to use SGLT2 inhibitors on patients with non-diabetic kidney disease—with the exception of those who should not use these kinds of drugs—is a “huge breakthrough.”

    “The DAPA-CKD study, which was published this year, a third of the patients did not have diabetes,” he said. “They (SGLT2 inhibitors) initially came out as diabetes drugs, but in fact, they benefit people without diabetes.”

    In terms of quality of life, SGLT2 inhibitors help to reduce swelling in the legs and improve the body’s water balance. Additional benefits include lowering high blood pressure and weight loss. 

    Side effects of these inhibitors include the possibility of developing a yeast infection (though this is easily treatable), low blood pressure, and electrolyte imbalances. Understandably, it is not recommended for people who already suffer from low blood pressure.

    The price of SGLT2 inhibitors varies between provinces and is usually between $2 to $3 a pill. They may also be covered under public reimbursement depending on the province. 

    With the prevalence of diabetes increasing for Canadians, Bajaj said the need for medications such as the SGLT2 inhibitors has become even more important.  

    “For people with diabetes, having different medication classes is important because diabetes is a complex disease and needs many different medications,” he said. “If we have medications that have low side effects like SGLT2 inhibitors and do not cause the opposite, which is low sugars or hypoglycemia, those medications are beneficial overall.” 

    Additional References: 

    By: Matthew Guida


    As a native Montrealer, I graduated from Concordia University with a BA in Anthropology and a minor in Film Studies. I am currently studying for my master’s degree in Journalism at Carleton University in Ottawa. My interest in journalism began while attending Concordia. I was a frequent contributor to the university’s independent newspaper, The Concordian. I further honed my skills and experience by working as a List Writer for the entertainment news website Screen Rant. Since I started attending Carleton University, I have strived to further improve my skills as a journalist in not only print, but also in the fields of data, investigative and broadcast journalism. In the past year, I have also developed a growing appreciation for radio journalism and podcasts. My current interests lie in studying the future of the journalism industry, writing and researching pop culture and social media trends, as well as furthering my career in the field of journalism.

  • 12 Nov 2020 9:02 AM | Anonymous


    They say you know you're in love when all the songs suddenly make sense. Harmonious chemistry certainly plays a part.

    From Robert Palmer's soulful rock proclamation, "Addicted to Love," to Ke$ha's late 2000s club hit, "Your love is my drug," for decades we've heard songwriters proclaim the prescriptive power of being in love. So just what is in love potion #9? And more importantly, with 45 per cent of Millennials making the conscious decision to stay single and focus on critical milestones like finding a career or obtaining a degree, can we replicate that head over heelssensation without a partner?

    Despite the ability to purchase a robot companion, a threat I've made to parents when they mention I've yet to bring a man home for Thanksgiving, we are miles away from encapsulating the high of romance into a device or an admissible drug. 

    That isn't to say we haven't uncovered ways to modulate neural pathways associated with that lovin’ feeling. In fact, a medication most women take as frequently as their daily vitamins has proven to do just this. 

    Since their introduction in the 1960s, hormonal contraceptives have been used by more than 500 million women alive today. The pill works by tricking a woman's body into thinking it’s pregnant by modulating levels of the natural female hormones estrogen and progesterone. However, despite their widespread use, little research has been done to fully understand the effect of administrating what are essentially reproductive hormones on the female brain. 

    Enter Michael Winterdahl, an Associate Professor in Neuroimaging at Aarhus University in Denmark and a bit of a love doctor himself. Winterdahl sought to determine if birth control could affect blood oxytocin levels in women on the pill. His study results illustrate that birth control can increase oxytocin levels in women regardless of their relationship status.

    So what's so special about oxytocin? It’s commonly referred to as the love hormone, a neurochemical that plays an indispensable role in helping us form bonds, including with romantic partners. Could be the key to a real love potion #9? 

    "It's the cuddle hormone; it’s the love hormone. It should be good." Winterdahl explains, "However, oxytocin should be released dynamically, as a burst." 

    This means that having this system hijacked by the birth control pill could also hijack how women form relationships. 

    Oxytocin is tied to learning circuits in our brains. When boy meets girl, they each receive a burst of the neurochemical that signals to them that this one may be worth pursuing. Winterdahl says the pill might change this feeling for women. Much like the effect of opioids, after receiving that first rush, or a sustained dosage, it will take more and more of the drug to replicate that feeling. 

    "If you're always high (on oxytocin), then the peak is just a small wave on this big ocean, so maybe you won't feel the buzz of being with the right person," he says.

    What does this mean for women on the pill? Well, the results aren't entirely clear. Women on oral contraception (and often for reasons beyond contraception), meet partners, fall in love, and live happily ever after. Studies show that women on the pill tend to choose a different variety of mates than their freecycling peers. 

    Winterdahl hypothesizes this could come down to how the pill functions by tricking the female into thinking she's pregnant. This causes them to look for comfort and security in a mate versus taking more risks and seeking out men who have more immune systems differences from themselves— making the steamy bad boys of the world just a little less appealing. 

    Another striking correlation was validated by Winterdahl's study, underlining that women on the pill do not exhibit a regular stress response and this can have a bearing on their dating behaviour. 

    Winterdahl explains that stress hormones like cortisol can drive us to excel in various scenarios by imparting a keen sense of alertness in new situations. Within the context of dating, the hormone helps us detect danger and the micro-cues (vocal inflection, body language, etc.), a potential date is signaling to us. 

    Without this stress response and an oxytocin surge, women are more likely to settle for the safe mate. Likely a nice accountant, engineer, banker – someone pragmatic who might not elicit butterflies, but seemingly can't be harmful. 

    So, Mom, Dad, no need to worry. Robots likely won’t make an appearance this Thanksgiving. But don’t complain if all my date wants to talk about is balanced spreadsheets or mass transfer. 

    By: Miranda Stahn


    A prairie girl at heart, Miranda completed both her Bachelor's and Master's of Science at the University of Alberta. Her thesis research focused on classifying new bacterial viruses for a unique class of bacteria known as Methanotrophs - named for their ability to survive off of unusual carbon compounds such as methane. Outside of her studies, Miranda has always been passionate about science communications and outreach. Since undergrad, she has been involved in several outreach initiatives run through well-known programs such as the Telus World of Science Edmonton (TWOSE), the University of Alberta's DiscoverE, WISEST (Women in Scholarship Engineering Science and Technology), and Science Slam Canada. Miranda is committed to making science accessible to everyone and firmly believes that effective and entertaining science writing is key to helping the public disseminate truth from fiction. For more details, please check out her LinkedIn: https://www.linkedin.com/in/miranda-stahn-93229483/

  • 09 Nov 2020 8:37 PM | Anonymous

    The time has come to explore the role of the polymath in modern-day science. The COVID-19 pandemic provides an opportune moment for this endeavour. The global impact of COVID-19 has highlighted the importance of viewing the pandemic from several angles, an ability that is well-matched to polymaths.

    According to the Oxford Learner’s Dictionary, a polymath is “a person who knows a lot about many different subjects (1).” The importance of this cannot be overstated in the context of a pandemic which shows the need to draw knowledge from several disciplines at once.

    A 2020 correspondence by Michael Araki in The Lancet states, “Today, we face numerous problems, from global health challenges to environmental crises, whose range and scope go far beyond any single discipline (2).”

    Management of the COVID-19 pandemic requires the support of many experts spanning various fields (3). A “multidisciplinary team approach” based on contributions from virologists, physicians, epidemiologists, immunologists, biostatisticians, pharmaceutical scientists, information technologists, economists and policy makers provides in-depth perspectives that may otherwise be unintentionally overlooked. 

    Amidst the genuine desire to share discipline-focused knowledge, challenges arise when disagreements occur among the experts involved. Strongly differing expert viewpoints, although valid in their own right, can influence the time taken for critical decision-making during crises. A possible approach for overcoming this hurdle is through the support of polymaths to provide a panoramic view of a situation. The ability to connect knowledge from various fields and moreover, transform that knowledge into meaningful solutions, can introduce a practical advantage to many situations (4).  

    Polymaths have long been recognized for their creativity, innovation and critical thinking. The contributions of past polymaths like Isaac Newton, Nikola Tesla, Leonardo da Vinci, Albert Einstein, Marie Curie and Jagdish Chandra Bose, to name a few, clearly show this (5-7). An equally important but less readily recognized trait is their ability to appreciate common principles across fields (8).

    So why is it uncommon to find polymaths nowadays?

    Despite the undeniable scientific contributions made by polymaths, a shift in favour of “specialists” has occurred over the last two centuries (9). This trend is readily observed in a modern, departmentalized university system where knowledge specialization is highly encouraged.

    It is therefore, important to understand the rationale that led to the deviation of the “Jack-of-all-trades, master of none” approach. Since the time of the “Renaissance man,” which has been epitomized by Leonardo da Vinci, knowledge has expanded at warp speed across practically every field (10). However, is a fear of information overload enough to justify a limited place in the modern world for polymaths, even at the price of decreased creativity? 

    Perhaps a look in the direction of Elon Musk, Steve Jobs and Mark Zuckerberg can offer useful insights. These modern-day polymaths have successfully used their “atypical skills” and ingenuity to make a significant impact, globally (11). Equally compelling is a notable history of successes by polymaths as Nobel laureates (12). 

    Logically speaking, is this multi-creative potential that defines polymaths confined only to a few selected individuals?

    In a brief commentary, Ronald A. Beghetto, and James C. Kaufman suggest that there is a potential for all individuals to express creativity across multiple knowledge domains (13). Accordingly, the more pertinent question is, “how likely is creative polymathy and how might it be nurtured in schools and classrooms?"

    Since information is readily available through the internet and a modern polymath’s competence is not required across every domain, the idea may not be as far-fetched as once perceived (11). In fact, in a dynamic, unpredictable world, scientific polymaths may very well have their place in the not too distant future.

    Resources:

    • https://www.oxfordlearnersdictionaries.com/definition/english/polymath?q=polymath.
    • Araki M. Scientific polymathy: the end of a two-cultures era? The Lancet. 2020;395(10218):113-114. DOI: 10.1016/S0140-6736(19)32564-4.
    • https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287410/.
    • https://www.bbc.com/worklife/article/20191118-what-shapes-a-polymath---and-do-we-need-them-more-than-ever
    • https://artuk.org/discover/stories/celebrating-500-years-of-polymathy-in-britain#
    • https://www.diygenius.com/polymaths/
    • https://www.nobelprize.org/womenwhochangedscience/stories/marie-curie
    • http://paulrcohen.github.io/papers/Polymathy.pdf
    • https://www.bbc.com/news/magazine-40865986
    •  https://unherd.com/2020/05/whatever-happened-to-the-polymath/
    • https://medium.com/accelerated-intelligence/modern-polymath-81f882ce52db
    • Root-Bernstein R, Root-Bernstein M. A Statistical Study of Intra-Domain and Trans-Domain Polymathy among Nobel Laureates. Creativity Research Journal. 2020;32(2):93-112. DOI: https://doi.org/10.1080/10400419.2020.1751545
    • Beghetto RA, Kaufman JC. Do we all have multicreative potential? ZDM. 2009;41(1):39-44


    By: Shirene Singh


    I am a PhD graduate of the University of Guelph with over 5 years of experience as an educator and medical sciences researcher. I also have a background in veterinary medicine. My passion for writing extends to global health concepts, viral immunology, infectious diseases and vaccines. My hope is to combine my scientific background and passion for writing to contribute to knowledge translation. My favorite pastimes include reading literature books, cooking and travelling. LinkedIn Profile: www.linkedin.com/in/shirenesingh

  • 29 Oct 2020 4:52 PM | Anonymous

    Eric Olson and a friend were hiking along Gainsborough Creek in Southwest Manitoba when they found what archaeologists had been seeking for decades: Firm evidence of First Nation farming.

    “It was the smoking gun we were looking for,” says Mary Malainey, archaeologist and professor at Brandon University in nearby Brandon, Manitoba. 

    What Olson and friend found was a hoe blade made from a bison scapula bone. Then they found another and a fragment of a third. “These bison scapula hoes are the biggest archaeology discovery in Manitoba in over 30 years,” Malainey says.


    First Nation farmers cut a hole through this bison scapula for sinew bindings to secure the bone blade to a wooden shaft. Photo: Mary Malainey

    A bison scapula has a wide blade at one end and a thick knob at the other. The overall shape is somewhat like a snorkeling flipper. In the centre, First Nation farmers cut a hole for the sinew bindings to secure the bone blade to a wooden shaft. For Olson, an amateur archaeologist studying at the University of Manitoba, this human-made hole clearly identified the scapula as a tool.

    Olson contacted Malainey, who recognized right away the significance of this discovery. It was strong evidence of pre-European farming on the Canadian grassland plains. Interestingly, Malainey says the previous big discovery, the one from over 30 years ago, was also evidence of First Nation farming on the eastern edge of the plains at Lockport, 350 km northeast of Gainsborough Creek.


    Gainsborough Creek is a tributary of the Souris River in Southwest Manitoba. Photo: Jay Whetter

    With funding from Brandon University, the Manitoba Archaeological Society and the Manitoba Heritage Grants program, Malainey put together a crew to do a testing excavation of the Olson site in July and August 2019. At least half a dozen archaeologists volunteered their time to help, which is a “testament to the importance of this discovery,” Malainey says.

    Malainey and the volunteers dug a series of one metre by one metre test units looking for intact cultural deposits – the stone tools, animal bones and pottery left behind by the people who had lived there. Olson’s hoe was found on the creek bed, which means it eroded from the bank and was no longer in its original location. As a result, the archaeologists could never confirm its place in time and space.

    Over the summer of 2019, Malainey and crew found artifacts in the dark band of paleosol, a layer in the soil horizon containing deposits from human occupation. These artifacts included a modified scapula and bone flakes, which she says could be signs of a bone tool workshop. In short, she says, “we found what we were looking for”.

    One archaeologist on site was Sara Halwas, a sessional instructor in anthropology at the University of Manitoba and co-editor of the Manitoba Archaeological Journal. Halwas has worked at the Lockport site that, in addition to bison scapula hoes, yielded bell-shaped crop storage pits and the charred remains of corn. This indicates that the crop was actually grown at that location. 

    Halwas says the Lockport farm site was active from the 1200s to the 1400s during a medieval warming period that made it possible to grow corn that far north. “One hypothesis is that farmers moved up the Red River Valley, then left during the Little Ice Age, which started around 1450,” Halwas says. But where did they go?

    They might have moved southwest. In the 1970s, Leigh Syms, curator emeritus of the Manitoba Museum, started looking for evidence of First Nation cultivation in southwest Manitoba but never found the “smoking gun”. Bev Nicholson, a former Brandon University archaeologist, found evidence of corn consumption in the Eastern Prairies but did not find clear evidence of local farming. Eric Olson’s discoveries changed that. What makes the Olson site especially exciting for archaeologists is its relatively pristine condition. It is within a wildlife preserve and appears to be untouched since the time of European arrival.


    Eric Olson and a friend discovered firm evidence of First Nations farming while hiking at Gainsborough Creek in Southwest Manitoba. Photo: Jay Whetter

    “This is very rare,” Halwas says. The Lockport site was heavily disturbed by establishment of the town and construction of the Winnipeg floodway. Other known Great Plains farming sites on the Missouri River were flooded by dam building from the 1930s to 1950s and were never properly examined.

    “The Olson site gives us the chance to answer questions we’ve not been able to answer before,” Malainey says.

    Malainey has been busy this winter applying for grants hoping to obtain enough funding for a five-year project at the Olson site. This summer, she hopes to use ground-penetrating radar to search for crop storage pits near the site. Halwas will be part of the team and has a few modern archaeology techniques she looks forward to trying. These include micro-botanical tests to check for pollen grains, phytoliths (silica bodies that form within and between plant cells) and starch grains, all of which she can use to identify the plants farmed in the area. Chemical tests of soil core samples can also show “peaks and deletions in soil phosphorus,” Halwas says, which could be evidence of a nutrient-hungry crop like corn. 

    Malainey says the Olson site was probably farmed for 150 to 200 years, during a time period after Lockport and up to the beginning of the fur trade. Further examination will be able to add clarity to that claim. Another question begging an answer is who were these farmers? “At this time, we don’t know,” she says. “European contact led to huge disruptions to Indigenous populations, which makes it very hard to attach ethnicity.” 

    Reprinted with permission from Prairie History magazine.

    By: Jay Whetter


    Jay Whetter is an award-winning agriculture journalist. He lives in Kenora, Ontario.


  • 26 Oct 2020 7:45 AM | Anonymous

    The front face of the Thwaites Glacier extends 18 – 23 metres above sea level. Photo: Carolyn Beeler/The World.

    Stretching over an expanse of Antarctica almost the size of Great Britain is a vast sheet of ice called the Thwaites, aptly nicknamed the Doomsday Glacier.

    As the earth warms at an accelerating rate, triggered by the heat-trapping effects of greenhouse gases, the Thwaites Glacier is set to trigger a massive rise in global sea levels. Once it melts away, it threatens to submerge coastal cities and even large parts of countries. 

    Antarctica, holding about 90 per cent of the ice on the planet, is central to the future rise of sea levels. Formed as centuries of snowfall compacted into ice, its ice sheet can be as much as two kilometres thick. As the ice builds up, it is pushed outward to the edges of the continent as glaciers.

    Antarctica’s Eastern ice sheet sits on high ground mainly above sea level, while its Western counterpart sits atop land that is mostly below sea level. It is here where ice is most compromised by warming waters, and it is here that the Thwaites Glacier rests. 

    This warm seawater originates in the North Atlantic and flows deep beneath a layer of colder water toward the South Atlantic. Shifting wind patterns due to a warming Pacific Ocean allow this warm, deep circumpolar water to well up over Antarctica’s continental shelf, encroaching on the icy continent. 

    The anatomy of the Thwaites Glacier itself reveals clues as to how quickly and how much of it will melt when faced with a warming climate. 

    While glaciers originate on land, the portion that tapers as it extends toward the sea sits on top of the water. This is a glacier’s ice shelf and it acts to buttress its main body.

    As oceans and the atmosphere warm, these icy ramparts weaken, leading to increased melting and calving where the ice face crumbles away as icebergs. Crumbling ice shelves can no longer support the ice behind them, and glaciers become preconditioned for further disintegration. To make things worse, declining snowfall means glaciers can’t replenish themselves. 

    The Thwaites Glacier, falling victim to its own location and structure, already contributes four per cent to rising global sea levels as its ice flows into the Amundsen Sea - a huge figure for a single glacier. Owing to a collapsing ice shelf, glacial “earthquakes” have been detected on its surface for the first time. 

    Usually the ice that breaks off of glaciers is thinner and just drifts away, but the ice at the edge of the Thwaites is thick. With warm water melting it from underneath, icebergs taller than they are wide are released, capsizing and colliding with the front edge of the glacier as they turn. 

    While this glacial disintegration is visible and dramatic, what lies below the water’s surface betrays another cause for concern. 

    The land beneath the Thwaites Glacier, the bedrock, slopes downward. The point at which the glacier meets the bedrock is called the grounding line, and as the ice of the glacier’s underside melts, the grounding line shifts back. Over time, more of the glacier sits directly above water instead of being attached to land, promoting accelerated melting from beneath. 

    What’s more is that cavities have now been detected below the glacier just ahead of its grounding line, further endangering its hold on the ground, allowing for warm water to impose deeper on the underside. Warm water has recently been measured for the first time at the grounding line. The temperature and high turbulence of this water allows it to more efficiently melt the base. One cavity in particular clocks in at two thirds the size of Manhattan.

    That isn’t all. Glacial ice, built of fallen snow, is fresh water, making it light relative to salty seawater. As glaciers melt, the light, fresh water flows upwards towards the glacier and heavier, warmer sea water is drawn up behind it. When sea water is cold this process occurs slowly, melting just a few dozen centimeters of the glacier a year, an amount easily balanced by new ice created by falling slow. Warm sea water, on the other hand, can increase melting rates a hundred-fold. 

    Should the Thwaites Glacier collapse, sea levels could rise by half a meter, but the harm doesn’t end there. Since the glacier stretches into the centre of Antarctica’s western edge, its crumbling could destabilize the rest of the western ice sheet, kicking off a multi-glacier collapse and resulting in more than three metres of sea level rise over the next few centuries. That’s enough to submerge parts of London, Vancouver, and New York City.

    Scientists still debate how imminent Thwaites’ full collapse is. While it is predicted it will take centuries, some believe the process has already begun. What scientists do know for certain is that once it gives way, there is no stopping it. Collapse, once begun, is inevitable. 

    Human action to curb greenhouse gases will alone determine how much ice is lost and how quickly. If we squander the opportunity to be proactive, the planet’s coasts as we know them, together with some of the world’s greatest cities, are inevitably imperiled. 

    References:

    By: Natalie Workewych

    Natalie is a PhD Student studying Pharmacology at the University of Toronto. Her academic background includes an undergraduate degree in Biochemistry and Pharmacology. She hopes to encourage ideas through writing, and bring thoughts on science to anyone the least bit curious.

Address:

P.O. Box 75 Station A

Toronto, ON

M5W 1A2

Powered by Wild Apricot Membership Software